Connect with us

HEALTH NEWS

Everything you need to know about AY.4.2, a mutation of the Delta variant that has experts worried

Published

on

Everything you need to know about AY.4.2, a mutation of the Delta variant that has experts worried

No sooner than you thought all the talk of new Covid-19 variants was over, there is news of yet another one: AY.4.2. But what is it, where did it come from and should we be concerned?

AY.4.2 is what is termed a “lineage”. These are labels given to branches of the Covid-19 evolutionary tree to illustrate their relatedness. They are overseen by the diligent Pango network, a joint team of researchers from the universities of Edinburgh and Oxford, who act as the custodians of lineages and handle the assignment of new ones.

Origins of AY.4.2

If we go back to April of this year, we can trace the origins of AY.4.2. Our team in United Kingdom’s Northumbria, working as part of Cog-UK – the British consortium that sequences the genomes of Covid-19 samples to see how the virus is changing – had just sequenced two samples connected via travel history to India.

At the time we knew the lineage circulating in India was B.1.617, but the cases we had sampled did not match this. Variants are distinguished by the different mutations they have in their genetic material and, looking at the mutations in our samples, it appeared our cases were missing some of the commonly accepted mutations of B.1.617 but also had some additional ones.

What we were reporting to colleagues in Cog-UK was classified the following week as B.1.617.2, one of three main sub-lineages of B.1.617, and which was later named Delta by the World Health Organization.

AY is a further evolutionary step forward from here. Once a lineage’s labelling gets five levels deep, a new letter combination is started to avoid the name getting too long. So the AY forms of the virus are not vastly different from what’s come before, even though their labelling is different. They are all sub-lineages of the Delta.

There are now 75 AY lineages identified, each with different additional defining mutations in their genome. One of these – AY.4 – has been steadily growing in proportion in the United Kingdom over the last few months, accounting for 63% of new UK cases in the last 28 days.

Selective advantage

We are still not sure if AY.4’s mutations confer a genuine advantage or if the increasing frequency of the lineage is simply down to what is called a “founder effect”. This is when a subset of viruses get separated from the overall viral population, and then reproduce in isolation. In the area where the separated viruses are, all subsequent viruses will therefore be descendants of this subset.

With Covid-19, this might have happened by there being a single case at a large event. This lone virus would have been the “founder”, the only virus spreading at the event. If it infected a sizeable number of people, who later infected others, this may have quickly built up a large amount of virus all from the same origin. Sometimes, for a certain form of a virus to dominate, it does not have to be better than others – it simply needs to be in the right place at the right time.

But, given its rise to dominance in the UK, AY.4 might well have a selective advantage. The defining change in AY.4 is the mutation A1711V, which affects the virus’s Nsp3 protein, which plays a number of roles in viral replication. However, the impact of this mutation is unknown.

This brings us to AY.4.2 – a sub-lineage of AY.4 – which was first noted at the end of September, though it appears it surfaced in the UK around June. It’s defined by two additional genetic mutations, Y145H and A222V, that affect the spike protein. The spike protein is a key part of the virus’s outer surface and is the part of its structure that it uses to get inside cells.

AY.4.2 has grown steadily in volume to the point where it now accounts for about 9% of UK cases in the last 28 days. It has also been observed in a few European nations: Denmark, Germany and Ireland, to name a few.

But whether its two mutations offer the virus a selective advantage is unclear as well. A222V was previously seen last year in the B.1.177 lineage that probably emerged in Spain and was then spread across northern Europe, most likely by holidaymakers. At the time, many were sceptical that A222V conferred an advantage. Indeed, the increase in the form of the virus that’s become known as AY.4.2 seems to have only occurred since it acquired its Y145H mutation.

Effect on immunity

This mutation is within an “antigenic supersite” of the spike protein – a part of the protein that antibodies frequently recognise and target. We know that this part of the spike protein has already been modified once before by a mutation in Delta’s genetic material, and that this possibly contributes to Delta’s greater ability to escape immunity, as antibodies have a harder time targeting it as a result. However, the research exploring this is still in preprint, meaning it is yet to be formally reviewed – so we need to treat its findings with caution.

But it is, therefore, possible the Y145H mutation could give the virus an even greater ability to escape immunity by making this supersite less recognisable to antibodies.

The counterargument is that, despite introduction into several European countries, AY.4.2 has failed to take hold, dropping off the radar in Germany and Ireland – though it is lingering in Denmark. This would suggest its ability to get around immunity isn’t any greater than Delta’s. Equally, it might just be that there was not enough of AY.4.2 arriving in these places for it to take hold.

Really, it is too early to tell if this is the beginning of the next dominant lineage. Any ability it might have to escape immunity needs to be confirmed by experimental work. Clearly, though, its emergence shows that there is a continued need for genomic surveillance of the virus.

HEALTH NEWS

Know about some common types of cancer

Published

on

By

Know about some common types of cancer

Cancer is not just one disease. There are more than 100 types, which can start anywhere in the body. They are named by the organ or tissue in which they start growing. They can form in organs, bones, muscles, tendons, fat, blood vessels, an lymph fluid.

Examples of more common types include:

  1. Carcinoma- This is the most common type, which forms a solid mass of tissue (tumor). Brest, lung, an colrectal cancer are types of carcinomas.
  2. Leukemia– This cancer starts in the blood, occurring when large number of abnormal white blood cells build up in the blood an bone, crowding out healthy blood cells. A lack of healthy blood cells can lower one’s immune function, increasing the risk of frequent infections, fatigue, and recurrent bruising or bleeding.
  3. Lymphoma- this cancer arises in lymphocytes, a type of white blood cell.lymphocytes normally fight infection, but here they grow out of control. This can cause swollen lymph nodes, shortness of breath, and fatigue.
Continue Reading

HEALTH NEWS

Here are some sleep hygiene tips

Published

on

By

Here are some sleep hygiene tips
  1. Try to avoid large meals, heavy snacking, or alcohol 2-3 hours before bed.
  2. Ensure a comfortable temperature, as feeling too hot or cold can disrupt sleep.
  3. Stop using electronic devices an hour before bed, especially those emitting blue light such as smartphones, tablets, and televisions.
  4. If your are sensitive to caffeine, try to avoid drinking caffeinated beverages 4-6 hours before bedtime.
  5. Schedule before-bed activities to signal that you are winding down, such as changing into pajamas and brushing teeth.
  6. If you awaken and can’t return to sleep, don’t stay in bed. Get up and do quiet Relaxing activities, such as reading, until you feel tired enough to fall back asleep.
  7. create a quiet, dark, relaxing environment in your bedroom. Dim lights and turn off your cell phone’s sound and vibration modes if possible.
  8. Set a sleep schedule and stick to it. Try to go to bed at night and awaken in the morning around the same times, even on weekends. This helps to regulate the body’s sleep cycles and circadian rhythms.
Continue Reading

HEALTH NEWS

How do you know if your back pain is serious?

Published

on

By

How do you know if your back pain is serious?

Back pain:

Back pain develops without a cause that your doctor can identify with a test. Conditions commonly linked to back pain include muscle or ligament strain.repeated heavy lifting or a sudden awkward movement can strain back muscles and spinal ligaments.

Signs that indicate, that its time to consult doctor for your back pain:

  1. If you have been in pain for over a week
  2. If the pain extends to other body parts
  3. If you have numbness, tingling or weakness
  4. If you have pain after an accident
  5. If your pain is worse at certain times or in certain positions
  6. If you are having problems with bowels or urination
  7. If you have unexplained weight loss
  8. If you have a fever
Continue Reading

Trending